Viscous Drag Reduction with Surface-Embedded Grooves
نویسندگان
چکیده
Turbulent drag reduction in wall-bounded flows is investigated experimentally by considering the dynamic effects provoked by large variation of anisotropy in the velocity fluctuations. It is shown that high drag reduction is obtained when the velocity fluctuations near the wall reach the statistically axisymmetric state with invariance under rotation about the axis aligned with the mean flow. Deductions based on the analysis of near-wall turbulence leads to the design of the grooved surface topology, for which it is demonstrated experimentally that can produce a maximum drag reduction of DR ≃ 25%. The drag reduction effect persisted in a narrow range of flow velocities and for the reported experimental conditions correspond to groove dimensions of about 0.8 viscous length-scale.
منابع مشابه
Investigation of Drag Coefficient at Subcritical and Critical Reynolds Number Region for Circular Cylinder with Helical Grooves
Drag reduction of an object is the major concern in many engineering applications. Experimental studies have been carried out on circular cylinder with helical grooves in a subsonic wind tunnel. Different cases of helical grooves with different pitches, helical groove angles and number of starts of helical groove on circular cylinder are tested. Experimental results show the drag coefficient is...
متن کاملDrag reduction by riblets.
The interaction of the overlying turbulent flow with riblets, and its impact on their drag reduction properties are analysed. In the so-called viscous regime of vanishing riblet spacing, the drag reduction is proportional to the riblet size, but for larger riblets the proportionality breaks down, and the drag reduction eventually becomes an increase. It is found that the groove cross section A(...
متن کاملThermal Radiation Effects on Mhd Free Convection Flow of a Micropolar Fluid Past a Stretching Surface Embedded in a Non- Darcian Porous Medium
A comprehensive study of thermal radiation on a steady two-dimensional laminar flow of a viscous incompressible electrically conducting micropolar fluid past a stretching surface embedded in a non-Darcian porous medium is analyzed numerically. The governing equations of momentum, angular momentum, and energy equations are solved numerically using RungeKutta fourth order method with shooting tec...
متن کاملChemical reaction and thermal radiation effects on MHD micropolar fluid past a stretching sheet embedded in a non-Darcian porous medium
The paper aims at investigating the effects of chemical reaction and thermal radiation on the steady two-dimensional laminar flow of viscous incompressible electrically conducting micropolar fluid past a stretching surface embedded in a non-Darcian porous medium. The radiative heat flux is assumed to follow Rosseland approximation. The governing equations of momentum, angular momentum, energy, ...
متن کاملTowards roughness-based drag reduction in cross-flow dominated flows
April 10-15, 2016 Abstract Recent theoretical results are presented from our ongoing study investigating the distinct convective instability properties of the boundary-layer flow over rough rotating disks. In this study, radial anisotropic surface roughness (concentric grooves) is modelled using the partial-slip approach of Miklavčič & Wang (2004) and the surface-geometry approach of Yoon et. a...
متن کامل